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Geometry and Algebra of Complex Causal Networks

Liam Solus

Exercises.

1. Convince yourself that H = 1 — 2 — 3 is not structurally identifiable, but it is
structurally identifiable if you intervene on Xs.

2. For the SEM

X1 = N1
X2 == NQ
X3 = Mg Xy + Aoz Xy + N3

for N; ~ N(0,w;) independent the defining causal DAG is G =1 — 3 «+ 2.

(a) Convince yourself that G is structurally identifiable via Markov equiva-
lence.

(b) Intervene at X3 to convince yourself that the edges of the v-structure are
causally interpretable.

3. Convince yourself that G = 1 — 2 is identifiable when we assume a Gaussian
model with nodes 1 and 2 having the same color.

4. Draw the staged tree and LDAG representations of all CStree models on 3
binary variables. For each tree, associate the variables to some events so that
the context-specific relations make sense to you.

Open Problems.

1. Enumerate the ways to partition the d-dimensional cube [0, 1]¢ into non-overlapping
faces of co-dimension at most 3.

2. Give an algebraic proof of the result of Peters and Biihlmann; i.e., that all
vertex-colored DAG models are structurally identifiable.
Considerations for Applications.

1. Think of some data sets where there may be clustering of direct causal relations.

2. Think of some data sets that may naturally contain context-specific CI relations.



Emergence of oscillations in a two-layer cascade

Angélica Torres

Problem 1: Some warm up computations consider the following reaction net-
work
X, X, X+ X; X +X, o X, X, (1)

(i) Write the system of ODEs & = f,(x), assuming mass action kinetics

(ii) The system has two conservation laws: x; + xo = T7 and z3 + x4 = T5. Find
the BKK bound for the system of polynomial equations

x1+x9 —T1 =0,
K11 — Koax3 = 0,
3+ x4 — 15 =0,

RoXoX3 — R3Ty4 = 0.

Recall that the BKK bound is the mixed volume of the Newton polytopes of
each equation.

(iii) Define a new system by substituting the expressions x; = T} — 29 and 23 =
Ty — x4 in the equations

R1T1 — RoZ2X3 = 07

KoXoZs — KaTy = 0.

Compute the BKK bound for the new system. Which one is better?

Problem 2. Generalization of problem 1

Let p1,...,pn € Rlzy, ..., 2,] aset
of multivariate polynomials such that the variety V(pi,...,p,) is zero dimensional.
Assume, without loss of generality, that the first & polynomials have degree greater
than 1, and the last n — k polynomials are linear (This setup models the equilibria of
Chemical Reaction Networks in a Stoichiometric compatibility class).

The cardinality of V(p1,...,pn) is bounded above by the mixed volume of the
Newton polytopes of each p;. This is known as the BKK bound.

Question: Is there any relation between the BKK bound for the system pq,...,p,
and the system py, ..., pj obtained by finding a parametric solution p(x;,, ..., z;,) of
Pk+1s - - -, Pn and defining p; = p; o 7



Fourier quasicrystals

Mario Kummer

Recall that a smooth closed subvariety X C (P!)" of codimension d is a strict Lee—
Yang variety if

L (21,..,20) EX = (771,75 ) € X.
2. If (21,...,2,) € X such that |z;]| # 1 for some ¢, then var(log |z|) > d.

Exercise 1 Prove that

Y —1+4i+t —i+t 14+i+t
N —1—i4+t i+t 1—i+t

) |t€CU{oo}} C (PH?
is a strict Lee—Yang variety of codimension 2. What is the multidegree of X7

Exercise 2 Compute some of the Fourier coefficients of X from 7?7, i.e. compute

k1 kg k‘3
/ LA dz;
XNT

for some values of k € Z* and i. Prove that this integral is zero when var(k) = 2.
Hint: Use Cauchy’s integral formula.
The arguably most popular quasicrystals are Penrose’s tilings. We briefly recall
their construction. Fix 7y, ...,vs € R such that

Yo+ +7a=0.
Further let ¢ € C be a primitive fifth root of unity and

Kj(z) = [Re(¢™ - 2) + ;]

for z € C. The set of vertices of the Penrose tiling with parameters 7o, ..., 74 is then
given by
4
P, = {3 Ki(z)| € C}.
j=0

We consider the matrix

Re(¢”) Im(¢?)
L=- :
Re(¢!) Im(¢*)

Problem 3 Compute the Zariski closure of
{exp(27iLz) | z € P,} C (C¥)°

for your favorite choice of vg,...,v4 € R with v+ -+ + 7, = 0.
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Algebra in probabilistic reasoning

Tobias Boege

Problem 1: Gaussian CI implication

Let ¥ be the covariance matrix of a regular Gaussian distribution. (Thus ¥ is
strictly positive definite!) Then [¢ 1L j | K] holds if and only if |¥;x ;x| = 0.

1. For a three Gaussian random variables 1, 2, 3 show that

(11 2|3)A[113]2] = [I1 2]A[IL 3].

2. For four Gaussian random variables 1, 2, 3, 4 show that

(I 3IA[IAL4)AN[I L 4]23]AN[21 3]1,4] = [11 4]
(Hint: Primary decomposition.)
Problem 2: Graphical models

The Gaussian graphical model Mg of a directed acyclic graph G = (V, F) consists
of all positive definite V' x V matrices ¥ which satisfy

[i 1L j | pa(j)] for all ¢ < j such that i — j & E.
Here < is a topological ordering on G and pa denotes the parent set.

1. Show that the two DAGs 1 — 2 — 3 and 1 < 2 < 3 define the same model.
What is its dimension? Which dimension did you expect?

2. For any directed acyclic graph G show that if ¢ — j is an edge, then [i 1 j |
pa(j)] does not hold for a generic 3 € M.

3. What do you think is the right Bayesian network to represent the causal relation-
ships between “Summer”, “Rain barrel is full”, “Ground is wet”, “It rained”,
“Sprinkler was on” and “Umbrella is wet”? Compare your models.



Geometric problems related to the Euler Charac-
teristic Transform

Henry Kirveslahti

Introduction

The Euler Characteristic Transform (ECT) [2] is a topological data analysis tool
that vectorizes shape data. It can be seen as a topological Radon transform, or as
a vectorization of the Persistent Homology Transform (PHT) [1], which is a kind of
a Persistent module that fibers over the sphere S?~'. These tools provide a way to
digitally analyse non-diffeomorphic shape data, and are in some sense a digitalization
of the Kendall Shape Space. These have also been extended to continuous type data,
allowing for applications to fMRI-imaging [3].

In theory, the ECT is an injective summary of the original shape data, meaning no
information is lost by working with the ECTs instead of the original shapes. However,
in practice one always discretizes the transform, and while there are some theorems
on how fine of a discretization is needed for an individual shape [2], there is no good
answer for what the discretization should look like concretely, and how to choose it
for a collection of shapes.

Problem Statement

In the following we define some key concepts. This will be very short, further
details are in [2]. Let X be a shape in RY, i.e. a nice (finite, compact®) simplicial
complex in R? . The Euler Characteristic ECT of X is defined as:

ECTx(v,t) = x(X N H,,)
=x({z € X| z-v < h}),

where x is the Euler Characteristic, and H, ; is the half-space consisting of points
less than height ¢ in direction v. Here v € S%! and h € R.

We may also consider these problems with what is called Persistent Homology
Transform, PHT. In PHT, we record the betti numbers instead of the Euler Charac-
teristic.

Some facts about the ECT:

e The ECT is almost everywhere constant. We will call the locations where it is
not constant jumps.

e The ECT can only jump at vertices of X. More precisely: if (vg, ) is a jump
point of the the ECT, then there exists a vertex py of X that satisfies pg- vy =
ho.

e The height functions partion S%' x R into strata, and the ECT is constant
away from the height functions.

lwe may further assume X is supported in the unit ball.



Question 1
Given n points X = {x1,...,z,} in R? define an equivalence relation on linear
functions f : R? — R that are injective on X given by the order of the vertices z;.

I a For a point cloud X, how many equivalence classes are there?
I'b For a fixed d and n, which point configuration attains the maximum?

Question 2

An effective way to sort lists is the mergesort, which is a sort of divide and conquer
algorithm.

In 2d, it is fairly easy to devise a divide and conquer algorithm that speeds the
intersection checks exponentially over brute force.

II What is an effective way to check intersection of collection of triangles on S?
(or S¢ in general)

Question 3
Given a shape X C R?, define it’s sinogram complexity S(X) as the number of
d-dimensional strata in S% ! x R its Euler characteristic transform.

IIT a What are the properties of S(X)?
IIT b Give a characterization of shapes of given sinogram complexity.

III ¢ Give a fast to compute algorithm to approximate the sinogram complexity of a
shape

ITI d Define a better notion of shape complexity that behaves better under e.g. set
union

IIT e (Try any of the above with the PHT)

For example, S(X) = 2 is the set of convex bodies.
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